Vibrational properties of silicates: A cluster model able to reproduce the effect of “SiO4” polymerization on Raman intensities

نویسندگان

  • Vanessa Labet
  • Philippe Colomban
چکیده

An ensemble of ten silicate clusters is examined using quantum chemical calculations (Density Functional Theory) as a potential model to study the effect of polymerization of the SiO 4 units on Raman intensities of silicates (crystalline and amorphous). Quite originally, instead of saturating non-bridging oxygen (NBO) with hydrogen atoms as generally found in the literature for similar approaches, NBOs, which hold a negative charge if not saturated, have been substituted by isoelectronic fluorines whose mass is corrected in normal mode calculations to be equal to that of an oxygen. By adjusting the number of fluorines per silicon, the different Q n coordination types characterizing the different classes of silicates are modeled. The relevance of this ensemble of clusters as a model to study the effect of polymerization on Raman intensities is established in several steps, the most important one being the qualitative reproduction of evolution of the Ip polymerization index with the number of bridging oxygen per silicon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH).

The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775°C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken...

متن کامل

Molecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...

متن کامل

Infrared and Raman spectra of silica polymorphs from an ab initio parametrized polarizable force field.

The general aim of this study is to test the reliability of polarizable model potentials for the prediction of vibrational (infrared and Raman) spectra in highly anharmonic systems such as high temperature crystalline phases. By using an ab initio parametrized interatomic potential for SiO2 and molecular dynamics simulations, we calculate the infrared and Raman spectra for quartz, cristobalite,...

متن کامل

Considering the Effect of Oxygen Group on the Magnetic Properties of Reduced Graphene oxides (RGOs)

Improved magnetic characters of graphene oxides besides its unique biocompatibility make this compound as a theranostics agent could be so practical in the medicine fields. Oxygen functionalities with disturbing the symmetry of graphene sublattices could induce magnetic moments and improve magnetic properties in these structures­. While that, vacancies and distortions, created by oxygen release...

متن کامل

Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer.

Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607 cm(-1) corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm(-1) corresp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013